DiagnosisEngine.hero.badge
DiagnosisEngine.hero.title
DiagnosisEngine.hero.description
DiagnosisEngine.hero.stats.threads
128+
DiagnosisEngine.hero.stats.consistency
99.9%
DiagnosisEngine.hero.stats.latency
~45ms
DiagnosisEngine.architecture.title
DiagnosisEngine.architecture.description
DiagnosisEngine.architecture.steps.input.label
DiagnosisEngine.architecture.steps.input.sub
DiagnosisEngine.architecture.steps.parallel.label
DiagnosisEngine.architecture.steps.parallel.sub
DiagnosisEngine.architecture.steps.vector.label
DiagnosisEngine.architecture.steps.vector.sub
DiagnosisEngine.architecture.steps.output.label
DiagnosisEngine.architecture.steps.output.sub
DiagnosisEngine.consistency.title
DiagnosisEngine.consistency.description
DiagnosisEngine.consistency.heatmap
Stable
Visual representation of token convergence across 500 samples
DiagnosisEngine.consistency.metrics.title
DiagnosisEngine.consistency.metrics.standard72.4%
DiagnosisEngine.consistency.metrics.chain84.1%
DiagnosisEngine.consistency.metrics.sampling99.8%
DiagnosisEngine.scenario.title
DiagnosisEngine.scenario.description
DiagnosisEngine.scenario.steps.query.title
DiagnosisEngine.scenario.steps.query.text
DiagnosisEngine.scenario.steps.conflict.title
DiagnosisEngine.scenario.steps.conflict.labelDiagnosisEngine.scenario.steps.conflict.text
DiagnosisEngine.scenario.steps.strategic.title
DiagnosisEngine.scenario.steps.strategic.text
DiagnosisEngine.scenario.report.id
DiagnosisEngine.scenario.report.action
DiagnosisEngine.scenario.report.analysisLabel
DiagnosisEngine.scenario.report.analysisText
DiagnosisEngine.scenario.report.risk.label
DiagnosisEngine.scenario.report.risk.valueDiagnosisEngine.scenario.report.risk.sub
DiagnosisEngine.scenario.report.misinfo.label
DiagnosisEngine.scenario.report.misinfo.valueDiagnosisEngine.scenario.report.misinfo.sub
DiagnosisEngine.scenario.report.recommendation.title
DiagnosisEngine.scenario.report.recommendation.text
DiagnosisEngine.output.title
DiagnosisEngine.output.description
DiagnosisEngine.output.intro
diagnosis_log_12.json
{
"model_diagnosis_result": {
"id": "diag_8823_jd92",
"timestamp": "2024-12-27T14:30:00Z",
"input_hash": "a1b2c3d4...",
"metrics": {
"n_samples": 128,
"consistency_score": 0.998,
"variance_detected": false
},
"condensed_output": "The brand sentiment for Q3 is positive due to...",
"deviations": [
{
"sample_id": 42,
"deviation": "Sentiment negative due to unrelated weather events...",
"weight": 0.002
}
]
}
}DiagnosisEngine.output.cards.aggregated.title
DiagnosisEngine.output.cards.aggregated.description
DiagnosisEngine.output.cards.aggregated.badge
DiagnosisEngine.output.cards.confidence.title
DiagnosisEngine.output.cards.confidence.description
DiagnosisEngine.output.cards.confidence.label98.4%
DiagnosisEngine.output.cards.hallucination.title
DiagnosisEngine.output.cards.hallucination.description
DiagnosisEngine.output.cards.hallucination.badge