Targetlytics.AI
DiagnosisEngine.hero.badge

DiagnosisEngine.hero.title

DiagnosisEngine.hero.description

DiagnosisEngine.hero.stats.threads
128+
DiagnosisEngine.hero.stats.consistency
99.9%
DiagnosisEngine.hero.stats.latency
~45ms

DiagnosisEngine.architecture.title

DiagnosisEngine.architecture.description

DiagnosisEngine.architecture.steps.input.label
DiagnosisEngine.architecture.steps.input.sub
DiagnosisEngine.architecture.steps.parallel.label
DiagnosisEngine.architecture.steps.parallel.sub
DiagnosisEngine.architecture.steps.vector.label
DiagnosisEngine.architecture.steps.vector.sub
DiagnosisEngine.architecture.steps.output.label
DiagnosisEngine.architecture.steps.output.sub

DiagnosisEngine.consistency.title

DiagnosisEngine.consistency.description

DiagnosisEngine.consistency.heatmap
Stable
Visual representation of token convergence across 500 samples

DiagnosisEngine.consistency.metrics.title

DiagnosisEngine.consistency.metrics.standard72.4%
DiagnosisEngine.consistency.metrics.chain84.1%
DiagnosisEngine.consistency.metrics.sampling99.8%

DiagnosisEngine.scenario.title

DiagnosisEngine.scenario.description

DiagnosisEngine.scenario.steps.query.title

DiagnosisEngine.scenario.steps.query.text

DiagnosisEngine.scenario.steps.conflict.title

DiagnosisEngine.scenario.steps.conflict.labelDiagnosisEngine.scenario.steps.conflict.text

DiagnosisEngine.scenario.steps.strategic.title

DiagnosisEngine.scenario.steps.strategic.text

DiagnosisEngine.scenario.report.id
DiagnosisEngine.scenario.report.action
DiagnosisEngine.scenario.report.analysisLabel
DiagnosisEngine.scenario.report.analysisText
DiagnosisEngine.scenario.report.risk.label
DiagnosisEngine.scenario.report.risk.valueDiagnosisEngine.scenario.report.risk.sub
DiagnosisEngine.scenario.report.misinfo.label
DiagnosisEngine.scenario.report.misinfo.valueDiagnosisEngine.scenario.report.misinfo.sub
DiagnosisEngine.scenario.report.recommendation.title
DiagnosisEngine.scenario.report.recommendation.text

DiagnosisEngine.output.title

DiagnosisEngine.output.description

DiagnosisEngine.output.intro

diagnosis_log_12.json
{
  "model_diagnosis_result": {
    "id": "diag_8823_jd92",
    "timestamp": "2024-12-27T14:30:00Z",
    "input_hash": "a1b2c3d4...",
    "metrics": {
       "n_samples": 128,
       "consistency_score": 0.998,
       "variance_detected": false
    },
    "condensed_output": "The brand sentiment for Q3 is positive due to...",
    "deviations": [
       {
          "sample_id": 42,
          "deviation": "Sentiment negative due to unrelated weather events...",
          "weight": 0.002
       }
    ]
  }
}

DiagnosisEngine.output.cards.aggregated.title

DiagnosisEngine.output.cards.aggregated.description

DiagnosisEngine.output.cards.aggregated.badge

DiagnosisEngine.output.cards.confidence.title

DiagnosisEngine.output.cards.confidence.description

DiagnosisEngine.output.cards.confidence.label98.4%

DiagnosisEngine.output.cards.hallucination.title

DiagnosisEngine.output.cards.hallucination.description

DiagnosisEngine.output.cards.hallucination.badge